

Simple Packaged Crystal Oscillator (SPXO)

■NZ2016SHA Data Sheet (For New Space)

Application For New Space

Features

- High quality and high reliability design equivalent to Automotive safety
- Supports a wide frequency range. (1.5 ~ 80 MHz)
- Supports a wide temperature range from -40 to +125 °C.
- Compact and light. Dimensions : 2.0 x 1.6 x 0.7 mm, weight : 0.01 g.
- Low phase jitter (Typ. 100 fs (Frequency Offset: 12 kHz to 20 MHz)@80 MHz, 3.3 V)
- Output Specification : CMOS
- Taped units enable automatic mounting IR Reflow (lead free) is possible.
- Lead-free.
- Conforms to AEC-Q100/Q200.

Document No. NDKT02-00040-001 2/13

- 1. Item : Simple Packaged Crystal Oscillator (SPXO)
- 2. Type : NZ2016SHA
- 3. Nominal Frequency : 1.5 ~ 80 MHz
- 4. NDK Spec. No. : See Table.1

5. Maximum Ratings

	ltem		Ratings	Notes	
	ltem	min	max	Units	notes
1	Supply Voltage	-0.3	+4.0	V	
2	Input Voltage	-0.3	V _{CC} +0.3	V	
3	Output Current	-20	+20	mA	
4	Storage Temperature Range	-55	+125	С°	

6. Electrical Specifications

	Parameters	SYM	Electrical Spec.				Notes	
	Falameters		min	typ	max	Units	Notes	
1	Nominal Frequency	f nom	1.5		80	MHz		
2	Supply Voltage	V _{CC}		+3.3		V		
3	Current Consumption (Operating)	Icc		See Table.	2	mA	at 25 °C	
4	Current Consumption (Stand-by)	I _{ST}			20	μA	at 25 °C	
5	Output Level	-		CMO	DS			
6	Load Capacitance	CL	15		pF			
7	Operating Temperature Range	T _{opr}	[-40 to +85] to [-40 to +125]		O° I	See Table.1		
8	Overall Frequency Tolerance	$\Delta f/f_{nom}$	± 50 to ± 100		ppm	See Table.1, *1		
9	Output Voltage	Vol			0.1 V _{CC}	V		
9		V _{OH}	$0.9 V_{CC}$			V		
10	Rise Time(t _r), Fall Time(t _f)	t _r /t _f	5		ns	0.1 V_{CC} to 0.9 V_{CC}		
11	Symmetry	SYM	45	45 55		%	at 1/2 V _{CC}	
12	Start-up Time	t _{su}	4		ms			
13	Output Wave Form	-	Square wave					
	Stand-by Function	#1 PAD input				# 3 PAD output		
14		H level (0.7 V_{CC} to V_{CC}) or open			Operating			
		L level (0.3 V _{CC} max)				High impedance		

*1 Inclusive of Freq. tolerance (at 25 °C), frequency/temperature characteristics, frequency/voltage coefficient.

Table.1 NDK Spec. No. List

Overall Frequency	Operating Temperature	Supply Voltage [V]		
Tolerance	Range [°C]	+3.3±0.33		
$\pm 100 imes 10^{-6}$	-40 to +125	NSC5415D		
$\pm 50 imes 10^{-6}$	-40 to +85	NSC5417D		

Table.2 Current Consumption (Operating)

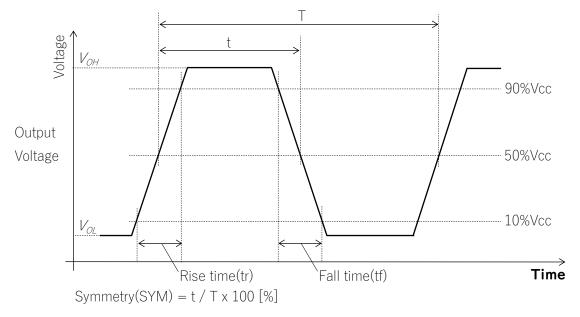
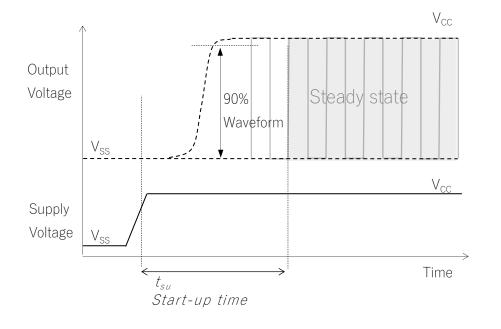
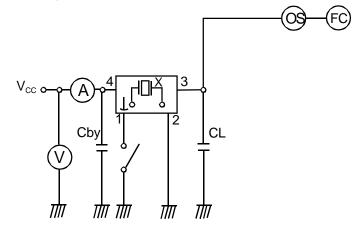

	Current Consumption [mA]								
Supply Voltage [V]	1.5≦F<10	10≦F<20	20≦F<30	30≦F<40	40≦F<50	50≦F<60	60≦F<70	70≦F≦ 80	
3.3 V	3.5 MAX	4.5 MAX	5.0 MAX	5.5 MAX	6.0 MAX	7.0 MAX	8.0 MAX	9.0 MAX	

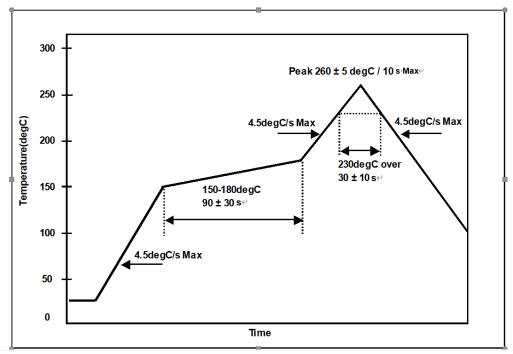
Table.3 Supported Frequency List


Table.3 Supported Frequency List									
	Nominal Frequency [MHz]								
12 MHz									
16.6666 MHz									
20 MHz									
24 MHz									
25 MHz									
27 MHz									
33.3333 MHz									
40 MHz									
80 MHz									

Frequencies not listed in the list are also available, so please contact us if you have any request.


Output Voltage

Start-up Time

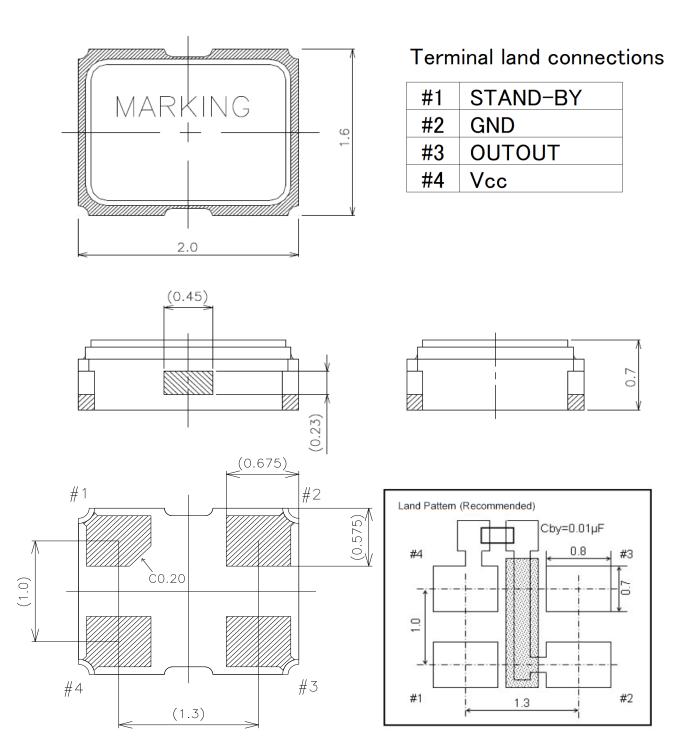

Measuring circuits

CL ; 15pF MAX including input capacity of oscilloscope Cby ; Bypass capacitor (0.01uF)

7. Prohibited items

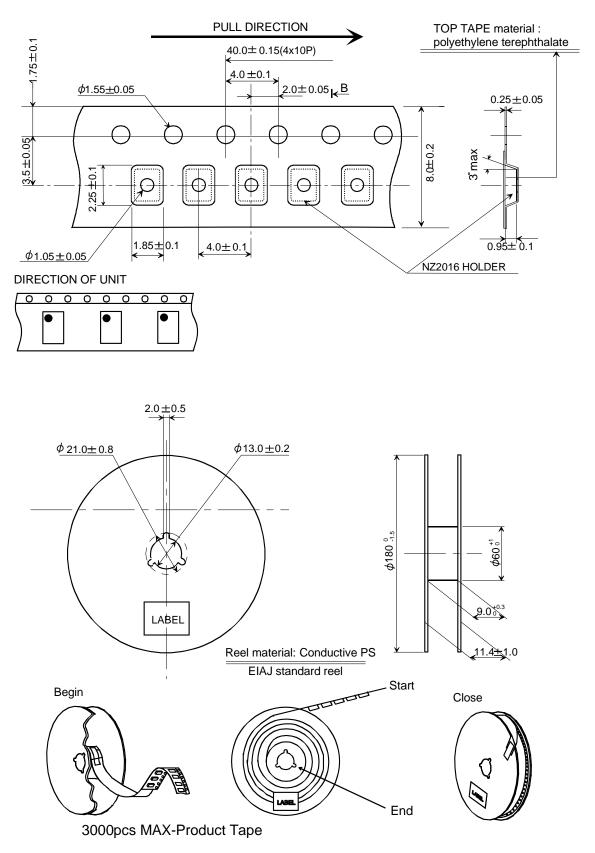
Example For Soldering Conditions (The below graph corresponds to Pb free solder)

Be sure to use the product under the following conditions. Otherwise, the characteristics deterioration or destruction of the product may result.

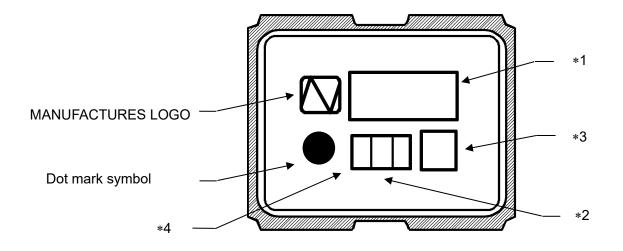

- (1) Reflow soldering heat resistance Peak temperature: 265 °C, 10 s Heating: 230 °C or higher, 40 s Preheating: 150 °C to 180 °C, 120 s Reflow passage times: 3 times
- (2) Manual soldering heat resistance Pressing a soldering iron of 350°C on the terminal electrode for 3 s.

8. Electrostatic Discharge

MM: 200 V HBM: 2000 V CDM: 500 V


■Dimension of External

Unit : mm Tolerance : ±0.1 mm

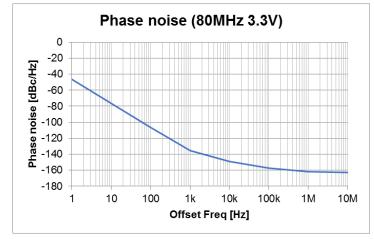


■ Taping and Reel Spec.

Unit : mm

Marking

*1[FREQUENCY]


*2[Lot Code(Digits are Two)]

*3 [Trace code]

*4 [Model Symbol] NZ2016SHA \rightarrow H.

Data

- Phase noise

- Phase jitter : Typ. 100 fs (Offset frequency : 12 kHz to 20 MHz)@80 MHz, 3.3 .V

Instruction Notice

1 Noise

When using this product, please insert a bypass capacitor between the power supply and GND. (Closer to the product terminal is desirable.)

The bypass capacitor values shown in our specifications and drawings are for reference only. (They are not guaranteed values.)

In actual use, please select the appropriate bypass capacitor value for your circuit.

NDK shall not be liable for any and all events resulting from or in connection with the use of this product in a manner that does not comply with the above instruction.

2 Resistance to dropping

The NZ2016S series is designed to be impactproof so that no damage occurs when dropped a height (75 cm) three times. However, if dropped from a desk etc., it is advisable to check their performance or contact us to check it.

3 Electrostatic protection

The NZ2016S series employ C-MOS ICs for the active element. Please use them in static-free environments. 4 Cleaning

Basically, the NZ2016S series are applicable for ultrasonic wave cleaning. However, in some case, during ultrasonic

wave cleanings, internal design may get damage. Please check condition carefully beforehand.

5 Other

The NZ2016S series are C-MOS applied products. And careful handling (same as with C-MOS IC) are needed to avoid electrostatic problems.

Incorrect PAD connection is cause of trouble. Please make sure to connect correctly as below.

#2 terminal \rightarrow GND #4 terminal \rightarrow V_{CC}

Notes On Use

- 1 Even if the appearance color etc. of the product differs by purchasing the component parts by more than two companies, there is no influence on the characteristics and reliability.
- 2 IN THE CASE OF THE FOLLOWING ITEMS, WE ARE NOT RESPONSIBLE FOR WARRANTY / COMPENSATION.
 - (1) WHEN PRODUCTS OF THIS SPECIFICATION ARE USED FOR EQUIPMENT RELATED TO HUMAN LIFE OR PROPERTY, IT IS THE RESPONSIBILITY OF THE CUSTOMER TO CONFIRM THE INFLUENCE ON THIS PRODUCT AND EQUIPMENT TO BE USED BEFOREHAND, CONDUCT NECESSARY SAFETY DESIGN (INCLUDING REDUNDANT DESIGN, MALFUNCTION PREVENTION DESIGN, etc.), PLEASE USE IT AFTER SECURING SUFFICIENT SAFETY OF EQUIPMENT.

1.SAFETY-RELATED EQUIPMENT SUCH AS AUTOMOBILES, TRAINS, SHIPS, etc., OR EQUIPMENT DIRECTLY INVOLVED IN OPERATION

- 2.AIRCRAFT EQUIPMENT
- 3.SPACE EQUIPMENT

4.MEDICAL EQUIPMENT

- 5.MILITARY EQUIPMENT
- 6.DISASTER PREVENTION / CRIME PREVENTION EQUIPMENT
- 7.TRAFFIC LIGHT
- 8.OTHER EQUIPMENT REQUIRING THE SAME PERFORMANCE AS THE ABOVE-MENTIONED EQUIPMENT

- (2) IN CASES WHERE IT IS NOT INDICATED IN THE REQUESTED STANDARD AND IS USED UNDER CONDITIONS OF USE (INCLUDING CIRCUIT MARGIN etc.) THAT CAN NOT BE PREDICTED AT THE PRODUCTION STAGE.
- (3) WHEN USING ULTRASONIC WELDING MACHINE.(THERE IS A POSSIBILITY THAT THE CHARACTERISTIC DEGRADATION IS CAUSED BY THE RESONANCE PHENOMENON OF THE PIEZOELECTORIC MATERIAL.(EXAMPLE;CRYSTAL PIECE)) WE WILL NOT TAKE ANY RESPONSIBILITY FOR THE INFLUENCE OF THE CUSTOMERS' PROCESS.

SO, PLEASE SUFFICIENTLY EVALUATE AT A SAMPLE STEP WHEN YOU USE ULTRASONIC WELDING MACHINE.

(4) USING RESIN MOLD MAY AFFECT THE PRODUCT CHARACTERISTIC. PLEASE MAKE SURE TO TELL OUR SALES CONTACT WHEN YOU USE RESIN MOLD. WE WILL PERFORM INDIVIDUAL CORRESPONDENCE ABOUT A DELIVERY SPECIFICATION AND A EVALUATION METHOD.

IN ADDITION, IF YOU USE RESIN MOLD WITHOUT CONTACTING US, AND CAUSES DAMAGES AGAINST A CUSTOMER OR A THIRD PARTY, WE WILL NOT BE LIABLE FOR THE DAMAGES AND OTHER RESPONSIBILITIES BECAUSE WE CONSIDER IT IS UNDER ELF-RESPONSIBILITY USING RESIN MOLD.

WE WILL NOT TAKE ANY RESPONSIBILITY FOR THE INFLUENCE OF THE CUSTOMERS' PROCESS. PLEASE EFFICIENTLY EVALUATE AT A SAMPLE STEP WHEN YOU USE RESIN MOLD.

(5) WHEN PERFORMING IMPROPER HANDLING THAT EXCEEDS THE GUARANTEED RANGE.

Notes on storage

- 1 When storing the product in high temperature and high humidity condition for a long time, product characteristics (solderability etc.) and packaging condition may be deteriorated. Please store product at temperature + 5 °C to + 35 °C, humidity 85 % RH or less. The product is an electronic component, so please do not storage and use, under a dewing state.
- 2 The product storage deadline is 12 months after delivery in unopened state. Please use within storage deadline. If you exceed storage deadline, please check the product characteristics etc, please use.

Handling of this document and other requests

Please refer to the "Site Guidance" on our website for the handling of information contained in this document. (<u>https://www.ndk.com/en/terms/</u>)