

Optical Low-pass Filter

• Terms and Definitions

- **Optical Low-pass Filter:** This uses elements that separate ordinary and extraordinary beams of incident light to remove pseudo-signals.
- Separation Width: The distance between the ordinary and extraordinary beams separated when light passes through an optical low-pass filter, and this is proportional to the width of the low-pass filter.
- **Pseudo-signal:** Generated by solid-state image pickup devices, pseudo-signals causes horizontal lines to look jagged or the black-and-white lattice fringe to be colored.
- **Spectral Characteristic:** This indicates transmittance with respect to light wavelength. A coating or glass is used for an optical lowpass filter in order to block out near-infrared light beams.

Example of how pseudo-signals are removed

(* CZP: Acronym of Circular Zone Plate)

Application

As shown in the figure below, this filter is used mainly as a spatial frequency low-pass filter for removing pseudo-signals from a camera.

Optical Low-pass Filter

Features

Single Plate-type Optical Low-pass Filter

- 1. A computer controlled grown synthetic quartz crystal ensures this filter has excellent characteristics as a birefringent plate.
- 2. IR-cut, AR coating, ITO Film and water-repellency coating are available upon request.

Standard specifications

Single Plate-type Optical Low-pass Filter

Specifications	Standards		
Separation width accuracy (thickness accuracy)	Specified separation width ±0.5 µm (Specified thickness ±0.05 mm)		
Outline size	Round plate of φ 5 to 30 mm Square plate of 5 x 5 to 40.5 x 48 mm		
Light axis accuracy	44°50'±60'		
Flatness	Max. 10 Newton rings (λ = 589 nm)		

Standard outline size (mm) (1/2-inch size) 9×10 11×12 (1/3-inch size) 8.5×9 (1/4-inch size) 7.3×7.8 (1/5-inch size) 5.0×5.5

Low-pass filters of other outline sizes can be manufactured upon request.

Bonding-type Optical Low-pass Filter

- 1. Pseudo-signals can be removed by combining a crystal phase plate (crystal wavelength plate), and an optical low-pass filter in the horizontal, vertical, or any direction of your choice.
- 2. Filter glass combination and coating are available upon request.

Bonding-type Optical Low-pass Filter

Specifications	Standards		
Outline size	Round plate of φ5 to 30 mm Square plate of 5 x 5 to 40.5 x 48 mm		
Light axis accuracy	44°50'±60'		
Optical axis bonding accuracy	Specified angle ±60'		
Flatness	Max. 20 Newton rings (λ = 589 nm)		

22×28 25.3×29.5 28×40

Bonding-type low-pass filters of other outline sizes can be manufactured upon request.

Environment Resistance

The following reliability tests guarantee the specified optical characteristics of NDK's optical components.

Subjected to high temperature	For 96 hours at +85 °C
Subjected to low temperature	For 96 hours at -40 °C
Subjected to high temperature and high humidity	For 96 hours at +60 °C and 95 %
Heat shock	10 cycles (one cycle is conducted for 30 minutes at -40 °C and 30 minutes at +85 °C)
Mechanical strength	No flaws after the surface is rubbed with absorbent cotton

Optical Low-pass Filter

• How to Determine Optical Low-pass Filter Specifications

When placing an order or asking for information, please inform us of the following items. (Check the boxes.)

		1. 5	Size of CCD	used	: 🗌 1/3 inch	: 🗆 1/4 inch	: 🗌 1/5 inch
		2. N	Number of pi	xels:			
		3. 0	CCD model r	name:			
		4. li	nfrared abso	rption filter name:			
		5. C	Coating				
				(When coating is pres	sent)		
				 AR single layer 	One surface	e : Both surfaces	
				•AR multi-layer	One surface	e : Both surfaces	
				•IR-Cut			
				•Others			
		6. E	Dimensions (part composition)			
				(a) × (b) × (c) :			
					A B (
						<u>↓ ↓ ↓</u>	
				, , , , , , , , , , , , , , , , , , ,	$\uparrow \qquad \ \ $		
					a		
				(b)	(0)		
			←		←	→	
					la sufere	Coating	
	Part Name	Thickness	Tolerance	and the Principal Surface	Rotation Angle	A : AR single layer B : AR multi-lay D : None E : Others	er C : IR-Cut coating
А						Both surfaces/One surface	A•B•C•D•E
В						Both surfaces/One surface	A•B•C•D•E
С						Both surfaces/One surface	A•B•C•D•E
D						Both surfaces/One surface	A•B•C•D•E
Е						Both surfaces/One surface	A•B•C•D•E
* Co	oncerning opt	ical low-pas	s filters other	than square ones, please info	orm us of your ind	lividual specifications.	

$\lambda/4$ and $\lambda/2$ Wavelength Plates

• Terms and Definitions

- **Crystal Wavelength Plate:** An element that uses the velocity difference between ordinary and extraordinary light beams to create a phase difference between both beams; the difference is obtained by using the birefringence of a crystal. When this characteristic is used, a $\lambda/4$ wavelength plate converts linearly-polarized light into circularly-polarized light, and a $\lambda/2$ wavelength plate converts circularly-polarized light into linearly-polarized light with its polarization plane rotated by 90 degrees.
- Wavefront aberration: This indicates the Peak-to-Valley difference of a measured wavefront as a unit of design wavelength: the Zygo Corporation's phase interference system is used to provide the data.
- P V = (maximum phase angle minimum phase angle)

Extinction Ratio: This indicates a value for the phase accuracy of a wavelength plate, and the conversion equation of the extinction ratio V [%] and phase difference Γ [deg] is as follows: V [%] = 100×cosΓ

$$V = \frac{I_{0}, 0 - I_{0}, 90}{I_{0}, 0 + I_{0}, 90}$$
$$\Gamma = \frac{360}{\lambda} (n_{e} - n_{o}) \times t$$

- I_0 , 0 : Output in a parallel Nicol state
- I_{\circ} , 90 : Output in an orthogonal Nicol state
- $n_{\mbox{\scriptsize e}}$: Refractive index of an extraordinary beam
- no: Refractive index of an ordinary beam
- t : Thickness of a phase plate
- λ : Design wavelength

Application

As shown in the figure below, wavelength plates are used mainly for picking up optical information files (DVD, etc) to prevent the back-talk noise of laser beams.

